



# Basic Outdoor WiFi Network Planning



Michael E Fox, N6MEF
Santa Clara County ARES®/RACES
SIG Meeting - 15-May-2014

Revised: 16-May-2014

ARES and Amateur Radio Emergency Service are registered service marks of the American Radio Relay League Incorporated and are used by permission.

#### Intended Audience

- This is a basic level presentation intended for someone who is getting started with outdoor WiFi networks
- For each slide here, there are probably 5 to 10 more slides of details, exceptions and other nuances that could be covered
- For more detail, there are countless sources already available from equipment vendors and others
- After reviewing this presentation, pick your favorite Internet search engine and begin ...

### Assumptions

- We assume the following has already been defined:
- Clear statement of the problem to be solved
  - Who, what, when, where, why, how
  - Clear set of requirements: traffic types, quantities, characteristics, people, ...
- Clear reasoning for solving the problem
  - Key assumptions, clear expectations, clear metrics to measure the results
- WiFi selected as the best solution
  - Based on the problem to be solved and the reasons for solving it, WiFi has been determined to be the right choice

## Agenda

- Site selection
- Topology selection
- Link analysis
  - Line of Sight Analysis
  - Band Selection
  - Link Budget Analysis
- Technology analysis
- Other considerations are also important (financial, functional, sustainability, ...) but we won't cover that here

#### Site Selection

- Most problems can be avoided by careful attention to detail at the mechanical and physical layer
- The right characteristics at each site can support a "set it and forget it" operation, eliminating the need for constant tinkering and fixing

#### Site Characteristics to Consider

#### Power

o What is available? Under emergency conditions?

#### Environment

o Exposure to weather, temperature, humidity, dust, ...

#### Structure

Safe, permissible for mounting antennas, equipment, ...

#### Access

o Can you get to it when you need to?

#### Security

- Will the equipment be secure against intentional tampering and unintentional disruption?
- Who has user access? Can users access the network without your knowledge? (Part 97 consideration)

#### Site Characteristics to Consider

- Maintainability
  - O How easy is it to work on the equipment?
- Remote monitoring and control (alarms, telemetry)
  - O Do you know what's happening with power, environment, security, ... even when you're not there?
- Other parties
  - o Interference from/to others?
  - Co-channel, adjacent channel, intermodulation, ...
- More ...

### **Topology Selection**

- Star / Hub-and-spoke
  - ☑ More deterministic performance (bandwidth, delay, jitter)
  - ☑ Single high location can support multiple low locations
  - **☒** Single point of failure
- Mesh
  - ☑ No single point of failure
  - ☑ Easier to deploy in an emergency using portable stations
  - Harder to find multiple locations (line-of-sight, power, ...)
  - **▼** Less deterministic network performance
- Hybrid
  - Some of each
  - Example: hub-and-spoke from central site to individual neighborhoods, then mesh throughout neighborhood
- Be aware of hidden transmitter problems in all cases

## **Link Analysis**

- Line of sight
- Band selection
- Link budget analysis

## Line of Sight

- Strict line of sight
- Fresnel zone
  - o Ideally, at least first Fresnel zone is clear
  - Clear 0.6 of first Fresnel zone is considered minimum
- Tools
  - Link Calculators
    - Ubiquity AirLink (http://www.ubnt.com/airlink)
      - Shows profile plus Google Earth path
  - Full propagation modeling software
    - Radio Mobile
      - Can export to .kml format for viewing with Google Earth











#### Radio Mobile

- Free software; download/install or use online
- Full Longley-Rice propagation prediction
- Export to .kml file for viewing with Google Earth



#### **Band Selection**

- 900 MHz, 2.4 GHz, 3.6 GHz, 5.8 GHz
- Lower frequencies less susceptible to line of sight issues; higher frequencies more susceptible to line of sight issues
  - o 5.8 GHz is relatively unforgiving
- Lower frequencies have larger Fresnel zones (greater chance that something will be inside the zone), but better ability to deal with it
- 900 MHz tends to be noisy (cordless phones, baby monitors, ...)
- 2.4 GHz is crowded; only 3 non-overlapping channels
- 3.6 GHz requires license, dynamic frequency selection
- 5 GHz has three separate sub-bands w/ different power/use regulations

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - Received Power, Link Margin, Maximum Channel Noise
- Check
  - Fade Margin
  - o FCC regulations
- If necessary, make adjustments and repeat

### **Example Problem**

- As we discuss each part of the analysis process, we'll apply a real-world example
- For our example, we will assume we need a point-topoint link between two sites that are 25 km apart
- The link serves a cluster of users at a remote site who will share the link bandwidth
- We will use the 5.8 GHz band

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - o Received Power, Link Margin, Maximum Channel Noise
- Check
  - o Fade margin
  - o FCC regulations
- If necessary, make adjustments and repeat

### Bandwidth Requirements

- Applications have bandwidth, delay, jitter requirements
  - E-mail generally requires little bandwidth (except for large attachments) and is insensitive to delay and jitter
  - VoIP is sensitive to both delay and jitter
  - Video is also delay and jitter sensitive and requires more bandwidth
- Bandwidth
  - WiFi is half duplex (i.e. simplex), plan accordingly
- Delay and Jitter
  - To minimize: use star topology, more bandwidth than necessary, QoS capabilities of commercial products

## **Bandwidth Requirements**

- Determine per-client bandwidth requirements
  - o For our example, we'll say 2 Mbps each
- Determine number of clients per link
  - o For our example, we'll say there are 10 clients on the link
  - For example, this could be 10 users on a LAN or 10 sites that hub into a single backbone link
- Determine total client bandwidth required
  - 2 Mbps \* 10 sites = 20 Mbps
- Determine raw bandwidth required
  - Raw WiFi bandwidth is about 2X the client (payload) BW
  - So raw bandwidth required = 20 Mbps \* 2 = 40 Mbps

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - o Received Power, Link Margin, Maximum Channel Noise
- Check
  - o Fade margin
  - o FCC regulations
- If necessary, make adjustments and repeat

#### 802.11n Modulation and Coding Scheme (MCS)

- 802.11n allows different channel sizes, modulation schemes and spatial streams
- Channel width
  - 20 MHz is fairly standard; 40 MHz is greedy (its shared spectrum!)
  - For our example, we'll pick 20 MHz
- Streams
  - Most outside plant equipment today is either one or two streams
  - o Each stream adds throughput: two streams is twice as fast as one
  - o For our example, we'd like to use 2 streams
- Modulation schemes
  - In order of increasing complexity: BPSK, QPSK, 16-QAM, 64-QAM
  - Higher density modulations give higher speed, but less noise immunity
- The combination of the modulation scheme with the number of streams defines the Modulation and Coding Scheme (MCS)

## A Note About "Streams" vs. "Diversity"

- 802.11n gear can transmit/receive multiple streams, at the same time, using more than one antenna or more than one polarization
  - Examples are equipment marked 802.11n MIMO
- Older 802.11a/b/g gear may have multiple antennas, but those are used for diversity; only one antenna is used at any given time
  - An example is the LinkSys WRTG series
- 802.11n gear can be configured for backward compatibility with 802.11a/b/g gear, but you give up the advantage of multiple streams

### MCS Comparison

|     |         |             | Req'd | Raw Data Rate (Mbps) |             |  |
|-----|---------|-------------|-------|----------------------|-------------|--|
| MCS | Streams | Modulation  | SNR   | 20 MHz Chan          | 40 MHz Chan |  |
| 0   | 1       | BPSK        | 7     | 7.2                  | 15          |  |
| 1   | 1       | BPSK        | 12    | 14.4                 | 30          |  |
| 2   | 1       | QPSK        | 14    | 21.7                 | 45          |  |
| _3  | 1       | <u>OPSK</u> | 18    | 28.9                 | 60          |  |
| 4   | 1       | 16QAM       | 22    | 43.3                 | 90          |  |
| 5   | 1       | 16QAM       | 25    | 57.8                 | 120         |  |
| 6   | 1       | 64QAM       | 29    | 65.0                 | 135         |  |
| 7   | 1       | 64QAM       | 32    | 72.2                 | 150         |  |
| 8   | 2       | BPSK        | 7     | 14.4                 | 30          |  |
| 9   | 2       | BPSK        | 12    | 28.9                 | 60          |  |
| 10  | 2       | QPSK        | 14    | 43.3                 | 90          |  |
| 11  | 2       | QPSK        | 18    | 57.8                 | 120         |  |
| 12  | 2       | 16QAM       | 22    | 86.7                 | 180         |  |
| 13  | 2       | 16QAM       | 25    | 115.6                | 240         |  |
| 14  | 2       | 64QAM       | 29    | 130.0                | 270         |  |
| 15  | 2       | 64QAM       | 32    | 144.4                | 300         |  |

**Note:** Different vendors publish different SNR numbers for each MCS. Some are more conservative than others. Most are fairly similar.

- For our example, we need:
  - o 40 Mbps data rate
- We also decided on:
  - o 20 MHz Channel
- Two possible answers:
  - o MCS4: 1 stream, 16-QAM
  - o MCS10: 2 streams, QPSK
- Use of 2 streams allows lower SNR
- We choose MCS 10
- Minimum SNR is 14 dB

### TX Power and RX Sensitivity

- Each radio will have specifications for TX power and RX sensitivity for each MCS
- Example from Ubiquiti Rocket M5 datasheet:

|              | DataRate | Avg. TX  | Tolerance |           | DataRate | Sensitivity | Tolerance |
|--------------|----------|----------|-----------|-----------|----------|-------------|-----------|
| 11n / AirMax | MCS5     | 24 dBm   | +/- 2 dB  | ×         | MCS5     | -83 dBm     | +/- 2 dB  |
|              | MCS6     | 22 dBm   | +/- 2 dB  | n / AirMa | MCS6     | -77 dBm     | +/- 2 dB  |
|              | MCS7     | 21 dBm   | +/- 2 dB  |           | MCS7     | -74 dBm     | +/- 2 dB  |
|              | MCS8     | 27 dBm   | +/- 2 dB  |           | MCS8     | -95 dBm     | +/- 2 dB  |
|              | MCSO     | 27 dPm   | 1/- 2 dD  | -         | MCSO     | -02 dPm     | 1/- 2 dD  |
|              | MCS10    | 27 dBm   | +/- 2 dB  |           | MCS10    | -90 dBm     | +/- 2 dB  |
|              | IVICOTT  | Z7 UBIII | +/- Z UB  |           | MICSTI   | -07 UBIII   | +/- Z UB  |
|              | MCS12    | 26 dBm   | +/- 2 dB  |           | MCS12    | -84 dBm     | +/- 2 dB  |

#### • For MCS 10

- Worst case TX power = 27dBm 2 dB = 25 dBm
- Worst case RX sensitivity = -90 dBm + 2dB = -88 dBm

#### Gains

- Gains are typically of two types
  - Amplifier gain
  - Antenna gain
- At GHz frequencies, clean amplifiers are very expensive and not really practical for the amateur
  - Don't use the garbage you see out on eBay or elsewhere; you'll trash the band for everyone
- So, antennas are where you achieve gain
- Both antennas on a link contribute to gain
- So gain is typically the sum of the transmitter antenna gain and the receiver antenna gain
  - o For our example, we'll use a 30 dBi dish on each end
  - So our total gain is 60 dB

#### Losses

- Free Space Path Loss
- Cable Loss
- Other losses

### Free Space Path Loss

- FSPL(dB) = 20log10(d) + 20log10(f) + 32.45
  - $\circ$  d = distance in km, f = frequency in MHz

|                  | Free Space Path Loss |                             |                             |                             |                             |  |
|------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|
| Distance<br>(km) | Distance<br>(miles)  | Path Loss (dB)<br>@ 900 MHz | Path Loss (dB)<br>@ 2.4 GHz | Path Loss (dB)<br>@ 3.6 GHz | Path Loss (dB)<br>@ 5.8 GHz |  |
| 0.5              | 0.3                  | 86                          | 94                          | 98                          | 102                         |  |
| 1.0              | 0.6                  | 92                          | 100                         | 104                         | 108                         |  |
| 1.5              | 0.9                  | 95                          | 104                         | 107                         | 111                         |  |
| 2.0              | 1.2                  | 98                          | 106                         | 110                         | 114                         |  |
| 2.5              | 1.6                  | 100                         | 108                         | 112                         | 116                         |  |
| 5.0              | 3.1                  | 106                         | 114                         | 118                         | 122                         |  |
| 7.5              | 4.7                  | 109                         | 118                         | 121                         | 125                         |  |
| 10.0             | 6.2                  | 112                         | 120                         | 124                         | 128                         |  |
| 15.0             | 9.3                  | 115                         | 124                         | 127                         | 131                         |  |
| 20.0             | 12.4                 | 118                         | 126                         | 130                         | 134                         |  |
| 25.0             | 15.5                 | 120                         | 128                         | 132                         | 136                         |  |
| 30.0             | 18.6                 | 121                         | 130                         | 133                         | 137                         |  |
| 40.0             | 24.9                 | 124                         | 132                         | 136                         | 140                         |  |
| 60.0             | 37.3                 | 127                         | 136                         | 139                         | 143                         |  |
| 80.0             | 49.7                 | 130                         | 138                         | 142                         | 146                         |  |

For our example, we have a 25 km path at 5.8 GHz  $\rightarrow$  136 dB

#### Cable Loss

- Loss between radio and antenna
- Some devices have integrated radio & antenna
  - $\circ$  Cable loss =  $^{\circ}$ 0
- Some devices have very short cables
  - Radio mounts on antenna with short jumper
  - o Cable loss = 1 dB
- Some devices have remote antennas
  - Indoor radio connected to outdoor antenna
  - Loss will be greater at higher frequencies
  - o Cable loss = 3+ dB
- For our example, we will assume 1 dB at each end

#### Other Losses

- Static obstructions
  - o buildings, walls, fences, ...
- Semi-static obstructions:
  - Obstructions that may present a different amount of loss at different times
  - Examples: trees full of wet leaves in the Spring can cause higher loss than dry trees with no leaves in the Fall/Winter
- Our biggest concern: with low-to-the-ground networks, these other losses will be the biggest unknown
  - Experimentation will be necessary
- For our example, we will assume 0 dB

## Summary So Far ...

| Parameter                     | Value                     |
|-------------------------------|---------------------------|
| Required Per-User Bandwidth   | 2 Mbps                    |
| Required Total User Bandwidth | 20 Mbps                   |
| Required Raw Bandwidth        | 40 Mbps                   |
| Channel Width                 | 20 MHz                    |
| MCS                           | 10                        |
| Minimum required SNR          | 14 dB                     |
| TX Power                      | 25 dBm (27 dBm +/- 2 dB)  |
| RX Sensitivity                | -88 dBm (90 dBm +/- 2 dB) |
| Gain (antenna)                | 60 dB (30 dB at each end) |
| Loss (FSPL)                   | 136 dB                    |
| Loss (cable)                  | 2 dB (1 dB at each end)   |
| Loss (other)                  | 0 dB                      |

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - Received Power, Link Margin, Maximum Channel Noise
- Check
  - o Fade Margin
  - o FCC regulations
- If necessary, make adjustments and repeat

#### **Received Power**

- Received Power (dBm) =
   Transmitted Power (dBm) + Gains (dB) Losses (dB)
- As previously determined:
  - Transmitted power = 25 dBm (for MCS10, Ubiquiti Rocket M5)
  - Gains = TX antenna gain + RX antenna gain
    - For our example, we are assuming 30 dB dishes on both ends
    - So, gains = 30 dB + 30 dB = 60 dB
  - Losses = FSPL + cable loss + other losses
    - For our 25 km example at 5.8 GHz, FSPL = 136 dB
    - For our example, cable loss is 2 dB (1 dB on each end)
    - For our example, other losses are 0 dB
    - So, losses = 136 + 2 + 0 = 138 dB
- Received Power = 25 dBm + 60 dB 138 dB = -53 dBm

## Link Margin

- Link Margin (dB) =
   Received Power (dBm) Receiver Sensitivity (dBm)
- As previously determined
  - Received Power = -53 dBm
  - Receiver Sensitivity = -88 dBm (for MCS10, Ubiquity Rocket M5)
- Link Margin = (-53 dBm) (-88 dBm) = 35 dB

### Maximum Channel Noise

- Maximum channel noise (dBm) =
   Received Power (dBm) SNR (dB)
- As previously determined:
  - Received power = -53 dBm
  - SNR = 14 dB (for MCS10)
- Maximum channel noise = (-53 dBm) (14 dB) = -67 dBm

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - o Received Power, Link Margin, Maximum Channel Noise
- Check
  - Fade Margin
  - o FCC regulations
- If necessary, make adjustments and repeat

### Fade Margin

 The Rayleigh Fading Model describes the relationship between the link margin and the link availability as a percentage of time

| % Availability | Unavailable Time / Day | Fade Margin (dB) |
|----------------|------------------------|------------------|
| 90             | 2.4 hrs                | 8                |
| 99             | 14.4 min               | 18               |
| 99.9           | 1.44 min               | 28               |
| 99.99          | 8.6 sec                | 38               |
| 99.999         | 0.864 sec              | 48               |

- A value of about 10-15 dB is generally recommended
- If the signal fades below the requirements for the selected MCS, most equipment will automatically renegotiate to a lower MCS (i.e. speed), if available, to keep the link up
- If the signal fades enough that a lower MCS is not possible, then the link will go down

## Fade Margin

- We just calculated
  - Link Margin = 35 dB
    - Link Margin = Received Power Receiver Sensitivity
  - Maximum Channel Noise = -67 dBm
    - Max Channel Noise = Received Power SNR
- Both are dependent on the received power
- But the actual received power will vary due to fading
  - If it drops by more than 35 dB, it will be below the receiver sensitivity (i.e. the receiver can't hear it)
  - If it drops below the noise floor, the receiver will not be able to distinguish it from other noise
- So how good are the above two numbers?

### Link Margin vs. Fade Margin

- Link Margin = 35 dB
- Checking the Rayleigh Fading Model table, we see that we should be able to maintain the selected MCS at least 99.9% of the time

| % Availability | Unavailable Time / Day | Fade Margin (dB) |
|----------------|------------------------|------------------|
| 90             | 2.4 hrs                | 8                |
| 99             | 14.4 min               | 18               |
| 99.9           | 1.44 min               | 28               |
| 99.99          | 8.6 sec                | 38               |
| 99.999         | 0.864 sec              | 48               |

## Max Channel Noise vs. Fade Margin

- Maximum Channel Noise = -67 dBm
- Noise floor values vary, depending on other signals and directionality of antenna
- Typical values in 5.8 GHz band are -88 dBm to -93 dBm, a difference of 21 dB to 26 dB from the calculated maximum channel noise
- According to the Rayleigh Fading Model, that is enough to predict at least 99% availability of our selected MCS

| % Availability | Unavailable Time / Day | Fade Margin (dB) |                   |
|----------------|------------------------|------------------|-------------------|
| 90             | 2.4 hrs                | 8                |                   |
| 99             | 14.4 min               | 18               | 4— 21 26 dp       |
| 99.9           | 1.44 min               | 28               | <b>←</b> 21-26 dB |
| 99.99          | 8.6 sec                | 38               |                   |
| 99.999         | 0.864 sec              | 48               |                   |

### **FCC** Restrictions

- Check to make sure your power and antenna selections are legal
- FCC Part 15 places restrictions on TX power and EIRP
  - Different for each band
  - Different for different parts of 5 GHz band
  - Different for point-to-point vs. point-to-multi-point
  - Well documented suggest building a cheat sheet
- FCC Part 97 lessens those restrictions but includes other restrictions
  - Traffic content, control operator, no encryption, ...
    - For example: Be careful of encryption at the user data level, such as someone using an SSL connection to their e-mail server, ...

### Example: Part 15, 5.8GHz, P-to-P

#### • Part 15.407(a)(3):

For Point-to-Point in the upper
 5.8 GHz band, if antenna gain is
 23 dB, then reduce TX power
 by 1 dB for each increase of 1
 dB in antenna gain

#### In our example:

- With a 30 dB dish and 1 dB of cable loss, we must turn down the TX power to 24 dBm
- But the previous calculations used 27 dBm (+/- 2 dB)
- Need to recalculate with a legal TX power!

| Cable Loss (dB):   | 1                      | L            |          |                   |  |
|--------------------|------------------------|--------------|----------|-------------------|--|
|                    | Max PTP TX Power (dBm) |              |          |                   |  |
|                    | 26 dB BW = 20 MHz      |              | 26 dB BW | 26 dB BW = 10 MHz |  |
| Antenna Gain (dBi) | Upper                  | Middle (DFS) | Upper    | Middle (DFS)      |  |
| 6                  | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 7                  | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 8                  | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 9                  | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 10                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 11                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 12                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 13                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 14                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 15                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 16                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 17                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 18                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 19                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 20                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 21                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 22                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 23                 | 31.0                   | 25.0         | 28.0     | 22.0              |  |
| 24                 | 30.0                   | 24.0         | 27.0     | 21.0              |  |
| 25                 | 29.0                   | 23.0         | 26.0     | 20.0              |  |
| 26                 | 28.0                   | 22.0         | 25.0     | 19.0              |  |
| 27                 | 27.0                   | 21.0         | 24.0     | 18.0              |  |
| 28                 | 26.0                   | 20.0         | 23.0     | 17.0              |  |
| 29                 | 25.0                   | 19.0         | 22.0     | 16.0              |  |
| 30                 | 24.0                   | 18.0         | 21.0     | 15.0              |  |
| 31                 | 23.0                   | 17.0         | 20.0     | 14.0              |  |
| 32                 | 22.0                   | 16.0         | 19.0     | 13.0              |  |
| 33                 | 21.0                   | 15.0         | 18.0     | 12.0              |  |
| 34                 | 20.0                   | 14.0         | 17.0     | 11.0              |  |

### Link Budget Analysis Process

- Gather bandwidth requirements
- Determine RF parameters
  - Channel width, streams, modulation type, minimum SNR,
     TX power, RX sensitivity, gains, losses
- Calculate
  - o Received Power, Link Margin, Maximum Channel Noise
- Check
  - o Fade Margin
  - o FCC regulations
- If necessary, make adjustments and repeat

### Adjustments

- If you have plenty of signal
  - Please turn it down (required in Part 97). We all have to share the band. Use only what you need.
- If you don't have enough signal
  - Use higher TX power (if legal)
  - Use higher gain antenna (if legal)
  - Use lower MCS
  - Select a different site
  - Select a different network topology
  - Select a different frequency band
- After you make any necessary adjustments, repeat the calculations using the new values

### Other Calculations

- In the previous example, we calculated the margins from the other values
- But, by re-arranging the terms in the previous equations, we can figure out the answers to many other practical and useful questions, such as:
  - o For a given situation, what is the minimum antenna gain?
  - o For a given situation, what is the minimum transmit power?
- These are left as exercises for the reader
  - O Don't you love it when you read that?!!!

## **Link Budget Calculators**



- Popular
  - Ubiquiti Link Calculator
  - MicroTik Link Calculator
- Note:
  - You still need to come up with the right numbers to plug into the calculator!
- Full radio propagation analysis
  - o Radio Mobile
  - Can display probability distribution

# **Technology Analysis**

• So, Part 97 mesh, or Part 15 802.11, or some of both?

| 802.11 Carrier Equipment (Part 15)        | Broadband HamNet Software (Part 97)        | Other? |
|-------------------------------------------|--------------------------------------------|--------|
| TDMA – no hidden transmitter problems     | CSMA – hidden transmitter problems         | ??     |
| Security (encryption)                     | No security (no encryption)                | ??     |
| No content restrictions                   | Content restrictions – must control access | ??     |
| No control operator needed                | Control operator needed                    | ??     |
| Limited EIRP (range)                      | EIRP (range) not as much of an issue       | ??     |
| QoS (helps with disparate signal levels)  | No QoS                                     | ??     |
| Performance can be deterministic          | Performance changes based on path          | ??     |
| Pre-configuration, network planning req's | Self-configuring, auto-discovery           | ??     |
| Other ??                                  | ??                                         | ??     |

• It all comes back to "what problem are you trying to solve?"

# Sequential vs. Iterative/Integrated

- This presentation showed a series of sequential steps
- In reality, the analysis is usually both iterative and integrated
- Bottom line
  - Start with a clear definition of the problem
  - o You will save yourself a lot of time!

# ... there's a lot more ...

... but that's enough for now.